
Heuristics, and “what to do if
you don’t know what to do”

Carl Hultquist



What is a heuristic?

• “Relating to or using a problem-solving technique
in which the most appropriate solution of several
found by alternative methods is selected at
successive stages of a program for use in the next
step of the program”

• “A common-sense rule (or set of rules) intended to
increase the probability of solving some problem.



Enough definitions! What are some
examples of heuristics or their uses?

• Greedy algorithm
– most well known, and well used

• Heuristic searches
– classic examples are:

• A*
• IDA* (Iterative Deepening A*)
• RBFS (Recursive Best-First Search)



The Greedy Algorithm

• Simply pick the best thing to do. Do it, then repeat
until you reach your goal.

• More formally:
– from state S, generate the set of all the successor states,

N
– for each state in N, determine a score for the state

(based on how close you think it is to the goal state)
– pick the state in N that has the best score



Heuristic searches

• Used in searching through graphs, usually where
you are given a starting state and need to reach a
goal state

• All have one thing in common: a heuristic function
• A heuristic function has the form:

f^(n) = g^(n) + h^(n)
where n represents some state, g^(n) is the length
of the path to state n, and h^(n) is the estimated
distance of state n from the goal state. h^(n) is the
heuristic part: this is usually an estimate.



Heuristic searches: an example
2 8 3
1 6 4
7 5

• How can we design a heuristic for
the sliding tile puzzle?

Answer: using what is known as the Manhattan distance. For each
tile, compute how many moves it would take to move that tile to
its goal position if there were no other tiles on the board. Add up
these distances for all of the tiles: this gives a rough idea of how
far this state is from the goal state.

So in this example, the Manhattan distance for the state shown is 1
+ 1 + 0 + 2 + 2 + 1 + 2 = 9

Another well-used heuristic is to simply count the number of tiles
that are not in their correct positions. In this case, that is 6 tiles.



So what’s the g’(n) useful for?
2 8 3
1 5
4 67

7

3
1 8 5
4 67

2 62 8 3
5 6

4 7
1

5

2 8 3
1 5 6

74

5

76 2 3
1 5
4 67

8
2 8 3
1 5
4 7 6

2 8 3
5
674

1
72 8 3

1 5
4 6

7
7



The A* Algorithm
• Keep a list of active states. Start by putting the initial

state into this list, then repeat the following:
– Pick the active state with the lowest f^ value, call it state S
– If S is the goal state, then we’ve found the best path. Exit!
– Remove S from the list
– Generate all the successors of this state. If the path from the

initial state through S to any of these states is better than
one we’re found before, then update the successor state to
remember that the best path to it was from S. Add those
successor states that we have not processed before to the
active list.



Comments on the A* Algorithm

• If a path to the goal exists, then A* will
always find the shortest path to the goal

• Because A* closely resembles a breadth-
first type of search, it consumes lots of
memory



An alternative: IDA*

• IDA* = Iterative Deepening A*
• Performs a series of depth-first searches,

each with a certain cost cut-off. When the f^
value for a node exceeds this cut-off, then
the search must backtrack. If the goal node
was not found during the search, then more
depth-first searches are conducted with
higher cut-offs until the goal is found.



RBFS (Recursive Best-First
Search)

• As the name implies, a form of recursive
searching

• As each node is processed, change the f^ values of
each node in the tree to be the minimum of the f^
values of its children

• Then pick the node with the smallest f^ value and
follow that path

• Sort-of like a depth-first version of A*, in that we
always pick the node with the smallest f^ value in
the whole tree. It’s different in that we propagate
small f^ values back up the tree



Extra info on heuristics

• Often used in artificial intelligence, since
humans often behave based on heuristics
rather than planning the absolute best way
of doing something

• Good book is “Artificial Intelligence: A
New Synthesis” by Nils J. Nilsson



In olympiads: what to do if you
don’t know what to do!

• Don’t panic!
• Use heuristics
• Use a naïve algorithm
• Use a naïve algorithm with a timeout



Using heuristics

• Key checkpoints before using heuristics:
– does the problem allow me to get partial marks?
– can I measure how close a solution is to the

goal?

• Other things that will help:
– can I spot a quick way of finding any solution

(possibly sub-optimal)?
– how would a human solve this problem? Can I

make the computer do something similar?



Using naïve algorithms

• Better than heuristics if you can’t get partial
marks, although also useful if you can get partial
marks.
– Without timeout: best for no partial marks. Means that

your program will probably run out of time for later
test-cases, but at least you’ll get the small ones

– With timeout: best for partial marks. Try and find the
best solution possible, then when you’re out of time
write out the best answer you’ve found and exit.



An example: the sliding tile
puzzle

• Problem: given a sliding-tile puzzle of size N,
find the shortest sequence of moves to slide the
tiles into the correct places.

• Could do a breadth-first search for a 3x3 puzzle,
but anything larger starts consuming too much
memory.

• In general, the sliding tile puzzle is considered
intractable, and to this day is used as a good test
for artificial intelligence algorithms. If you were
given this in an olympiad, where would you start?



Ideas for solving the sliding-tile
puzzle

• Firstly, let’s evaluate if heuristics would be a good
choice to use here:
– since researchers can’t find a good solution to this

problem, we can guess that neither can the contest
organisers! This means that there should be some kind
of partial marks scheme, depending on how good your
solution is compared to that of the organisers.

– it’s very easy to determine how close a solution is to the
goal, by either using the Manhattan distance or the
number of tiles that are out of place

• This means that heuristics should work quite well.



Ideas for solving the sliding-tile
puzzle (2)

• Next step: what kinds of things could we try?
– A heuristic search. In this case, you’d probably have to

use a depth-first type of search - either IDA* or RBFS -
since for N greater than 3 the A* algorithm would take
up too much memory. But even the IDA* or RBFS are
likely to be a bit slow with larger N, so if you used
these you might need to use a timeout as well.

– For small N (like 3 and maybe 4), you could do a
breadth-first search. This will guarantee that you get
these cases 100% right. The down-side: this won’t work
for bigger cases of N.



Ideas for solving the sliding-tile
puzzle (3)

• We still need to find something that will work for
all N: let’s work out how a human might do the
puzzle.
– Most humans probably solve the puzzle by moving the

tiles to their correct spots one at a time.
– Special care needs to be taken for the corner pieces.



Ideas for solving the sliding-tile
puzzle (4)

• Divide and conquer!
– If you think about it, a 4x4 puzzle is

the same as a 3x3 puzzle with an
extra layer wrapped around it. In
general, an NxN puzzle is the same
as a (N-1)x(N-1) puzzle with an
extra layer wrapped around it.

– So to solve an NxN puzzle, all we
need to do is move the pieces of the
extra layer into their right places
and then solve the remaining
(N-1)x(N-1) puzzle.

1
5 7

14 12

10 8
9 6 15 11

13

432



Final strategy for sliding-tile
puzzle

• Process 1 layer at a time. For each layer:
– move one tile at a time into position
– process tiles in the layer in order (so start at one end of

the layer, and work toward the other)

• Then, if you have time, do the following extras:
– Once you reach a 3x3, do a breadth-first search to finish

off the last part of the puzzle in the smallest number of
moves

– Start generating random paths to try and find a shorter
path than the one you constructed from the previous
steps. Put in a timeout to make your program output the
best path it found when it runs out of time. Or use some
kind of depth-first search like IDA* or RBFS.



Extra ideas

• Another idea is to consider each tile as an agent
that has its own goal (to get to the correct
position). Each tile can then either force other tiles
to move out of its way, or another tile might attack
it and force it to move out of the way!

• This kind of “intelligent” approach can lead to less
“logical” solutions, but in so doing can avoid
things like loops and can find new ways of solving
a problem efficiently.



Readings on the sliding-tile
puzzle

• For those interested:
– “A Distributed Approach to N-Puzzle Solving”,

by Alexis Drogoul and Christophe Dubreuil
– “Kevin’s Math Page: Analysis of the 15/16

puzzle”.
http://kevingong.com/Math/SixteenPuzzle.html


